What Makes Word-level Neural Machine Translation Hard: A Case Study on English-German Translation

نویسندگان

  • Fabian Hirschmann
  • Jinseok Nam
  • Johannes Fürnkranz
چکیده

Traditional machine translation systems often require heavy feature engineering and the combination of multiple techniques for solving different subproblems. In recent years, several endto-end learning architectures based on recurrent neural networks have been proposed. Unlike traditional systems, Neural Machine Translation (NMT) systems learn the parameters of the model and require only minimal preprocessing. Memory and time constraints allow to take only a fixed number of words into account, which leads to the out-of-vocabulary (OOV) problem. In this work, we analyze why the OOV problem arises and why it is considered a serious problem in German. We study the effectiveness of compound word splitters for alleviating the OOV problem, resulting in a 2.5+ BLEU points improvement over a baseline on the WMT’14 German-to-English translation task. For English-to-German translation, we use target-side compound splitting through a special syntax during training that allows the model to merge compound words and gain 0.2 BLEU points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

Modelling pronominal anaphora in statistical machine translation

Current Statistical Machine Translation (SMT) systems translate texts sentence by sentence without considering any cross-sentential context. Assuming independence between sentences makes it difficult to take certain translation decisions when the necessary information cannot be determined locally. We argue for the necessity to include crosssentence dependencies in SMT. As a case in point, we st...

متن کامل

The RWTH Aachen German-English Machine Translation System for WMT 2015

This paper describes the statistical machine translation system developed at RWTH Aachen University for the German→English translation task of the EMNLP 2015 Tenth Workshop on Statistical Machine Translation (WMT 2015). A phrase-based machine translation system was applied and augmented with hierarchical phrase reordering and word class language models. Further, we ran discriminative maximum ex...

متن کامل

Improving Neural Translation Models with Linguistic Factors

This paper presents an extension of neural machine translation (NMT) model to incorporate additional word-level linguistic factors. Adding such linguistic factors may be of great benefits to learning of NMT models, potentially reducing language ambiguity or alleviating data sparseness problem (Koehn and Hoang, 2007). We explore different linguistic annotations at the word level, including: lemm...

متن کامل

Word Representation Models for Morphologically Rich Languages in Neural Machine Translation

Dealing with the co mplex word forms in morphologically rich languages is an open problem in language processing, and is particularly important in translation. In contrast to most modern neural systems of translation, which discard the identity for rare words, in this paper we propose several architectures for learning word representations from character and morpheme level word decompositions. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016